

Lead-Cooled Fast Reactor (LFR)

T. R. Allen and D.C. Wade American Nuclear Society Winter Meeting: Washington, D.C. November 18, 2002

1

Characteristics

- Pb or Pb/Bi coolant
- •550°C to 800°C outlet temperature
- Fast Spectrum
- Multi-TRU recycle
- •50-1200 MWe
- 15–30 year core life

Intrinsic Features of Lead Alloy

- Low Neutron Absorption and Slowing Down Power
 - Allow to open the lattice, increase coolant volume fraction absent a neutronics penalty
 - Facilitates natural circulation
- High Boiling Temperature at Atmospheric Pressure (~1700°C)
 - Unpressurized primary (precludes loss of coolant accident initiator)
 - Margins are available to employ passive safety based on thermo/structural feedbacks
 - Potential to raise core outlet temperature (~800°C suitable for H₂ production and other process heat missions)
- Non-vigorous reaction with air and water
 - Potential to simplify heat transport circuits
 - Potential to simplify refueling approaches

Electricity Production Mission

Sustainable electricity production using fissile self-sufficient closed fuel cycles

Rapid Growth in Developing Countries

EEU = Central & Eastern Europe; LAM = Latin America; MEA = Middle East & North Africa; AFR = Sub-Suharan & Southern Africa; CPA – Centrally Planned Asia & China; PAS = Pacific OECD (Japan, Australia, New-Zealand); SAS = South-East Asia; NAM – North America; WEU = Western Europe; PAU = Other Pacific Asia; FSU = Former Soviet Union

4

Trend Toward Low Carbon Energy Sources

Ratio of hydrogen (H) to carbon (C) for global primary energy consumption since 1860 and projections for the future, expressed as a ratio of hydrogen to carbon (H/C). SOURCE; Ausubel (1996) and Marchetti (1985).

Established Markets

- Established Market Features
 - Extensive electricity grids
 - Fuel cycle support infrastructures in place
 - Large scale financing available
- Large Monolithic and Modular Concepts
 - 1200 MWe Monolithic (economy of scale strategy)
 - ~300 MWe modular (economy of just-in-time capacity additions)
- Fissile self sufficient or net TRU burners
- Targeted primarily to electricity markets (regulated or deregulated) in industrialized countries
- Financial conditions may require high interest/quick return on capital (modular plants)

Developing Markets

- Small or sparse grids or developing countries lacking an indigenous fuel cycle infrastructure and tight capital availability
 - ~50-150MWe "Battery" (Economy of Mass Production)
 - De-rated power density (LWR range) (natural circulation cooled)
 - Passive load follow/passive safety (no safety functions for BOP)
 - Long refueling interval: 15-20y with an internal conversion ratio ~1.0
 - Limited Staffing
 - Transportable
 - Factory built turnkey plant
 - Rapid installation & revenue generation
 - Cassette or entire module refueling-no refueling equipment on site

Developing Markets

- Regional fuel cycle centers offering front & back end services with operation under International Nonproliferation Oversight
 - No Interest (or capacity) to emplace a full fuel cycle infrastructure
 - Nonproliferation advantages due to localized international oversight of bulk fuel and waste management
- Resulting institutional Issues and paradigm shift
 - Supplier assumes risk of supplying large quantities of a commodity product; client risk is reduced
 - International consensus needed for acceptability of regional fuel
 cycle centers which also include waste management

Extended Energy Products Mission

- Higher temperature (~800°C) operation for hydrogen manufacture
- Desalinization bottoming cycles for potable water

•Links clean sustainable nuclear resource to clean emission free fuel (H₂)

Actinide Management Mission

- Symbiotic Fuel Cycles
 - Fast burner reactors for fission consumption of TRU from open cycle thermal reactors

Power Plant Innovations

Heat Transport

- -Natural circulation at full power (open lattice, low power density)
- -Lift pump
- -Direct contact heat exchange
- -Direct contract steam generation
- -Copper or liquid metal bonded steam generation design

Plant Control

- -Passive load following:
 - •Zero burnup control swing, internal conversion ratio of one
- -Feedbacks innately adjust power to heat request from BOP

Power Plant Innovations

- Energy Converters
 - -Supercritical CO₂ Brayton Cycle
 - -Supercritical Rankine Cycle

Fuel Cycle Innovations

- Advanced aqueous or pyroprocess recycle technology with intrinsic nonproliferation features
 - Produces co-mixed Pu+MA feedstock (no separated Pu)
 - Incomplete fission product separation
- Fuel Cycle Support Facilities Options
 - Co-located
 - Regional
- Multiple Fuel Options
 - Fuel types TRU/U/Oxide, TRU/U/Nitride, TRU/U/Alloy, TRU Alloy,
 MA Alloy
 - Remote refabrication technology depends on fuel type
 - Simplified pelletization (oxide, nitride)
 - Vibrocompaction (oxide, nitride)
 - Injection casting (metal)

Enabling R&D-Materials

- Structures and Cladding: Corrosion control, radiation stability, and fuel compatibility
 - Ferritic-martensitic steels (550°C concepts)
 - Ferritic-martensitic ODS (550°C + concepts)
 - Si C or Zr N composites or coatings (800°C concepts)
 - Vanadium or other refractory metal alloys (800°C concepts)
- Heat Exchangers : Tube Interfaces

```
Pb or Pb-Bi/steam and HBr + Steam / Steam

/ SC CO<sub>2</sub> / CO<sub>2</sub>

/ He

/ Molten Salt / Molten Salt
```

Fabricability of structural materials

Enabling R&D-Fuel cycle

- Nitride Fuel: High potential for lead alloy concept mlssions
 - Compatible with Pb and good to high temperature
 - High density; high thermal conductivity to enable passive safety
- Required R&D
 - N15 enrichment and recovery during recycle
 - Pyro recycle/in-situ front end dissolution, and back end reconversion
 - Vibropac remote refabrication
 - Fuel/Clad/Coolant Performance Testing
 - Properties: unirradiated; irradiated
 - Normal & operational transient testing
 - Upset condition testing
 - Severe event phenomenology testing

Enabling R&D-Energy Conversion

- Supercritical CO₂ Brayton Cycle
 - Thermodynamic optimization
 - Recuperator design, IHX design
 - Turbine design
- Ca-Br Water Cracking
 - Materials
 - Ca support
 - Properties of reactants
 - Rate constants
 - Flowsheet/bench scale/prototype
- Desalinization Bottoming Cycle
 - Overall BOP heat balance
 - Optimized hybrid cycles

Summary

- Fast Spectrum, closed TRU-Multi recycle fuel cycles
 - Operate as fissile self sufficient

or

- Operate as TRU burners in a symbiotic nuclear energy park
- Power Plants Display
 - Range of sizes 1200 MWe, 300 MWe, 50-150MWe
 - Extensive innovation in
 - Heat transport
 - Energy conversion
- Special emphasis on expanding client base:
 - Developing country markets
 - New energy products (H₂, Water)

Summary

- Roadmap
 GENERATION IV
 nuclear energy systems
- Institutional Innovations will be Needed for the Battery Concepts
 - Economy of mass production
 - Regional fuel cycle facilities
- Extensive R&D will be required
 - Fuel/clad/coolant combinations currently have only sparse database
 - New recycle/refab required for new fuel (nitride, fertile-free for burners)
 - New energy converters require development

Backup

Ca-Br Cycle

4-Step Thermochemical Cycle

	<u>T</u>	emp (°C)	Heat Flow	<u>Purpose</u>
1.	Ca Br2 (s) + H2O (g) ® CaO(s) + 2HBr(g)	700-750	in	Crack water
				with Ca Br2
				and heat
2.	Ca O(s) + Br ₂ (g) ® Ca Br ₂ (s) + ½ O ₂ (g)	500-600	~ neutral	Regenerate
				CaBr2 using
				Br ₂
3.	Fe3O4(s) + 8H Br(g) ® 3Fe Br2(s) + 4H2O(g) +Br2(g)	200-300	out	Regenerate
				Br ₂ using rust
4.	$3FeBr_2(s) + 4H_2O(g) \otimes Fe_3O_4(s) + 6HBr(g) + H_2(g)$	550-600	in	Regenerate
				rust using
				water & heat
	He released in Stan 4: Op released in Stan 2			

- H2 released in Step 4: O2 released in Step 2
- Heat Supplied at ~725°C in Step 1 and at ~575°C in Step 4